

´

{…} JSON

JSON guide for LCAbyg version 5.3.1.0
Creation of JSON projects in LCAbyg - import

Title JSON guide for LCAbyg 2023

Subtitle text Creation of JSON projects in LCAbyg - import

Published December 2020

Last update December 2022

Authors Terese Pagh, Christian Grau Sørensen, Anne Mathilde Gøtke

Keywords JSON, JavaScript Object Notation, LCAbyg

Publisher
BUILD - Institut for Byggeri, By og Miljø, Aalborg Universitet,
A.C. Meyers Vænge 15, 2450 København SV

Email lcabyg@build.aau.dk

Website https://www.lcabyg.dk/da/

lcabyg@build.aau.dk
https://www.lcabyg.dk/da/

Contents

1 Introduction and Guide build up 2
1.1 Introduction . 3

1.1.1 The JSON file format . 3
1.1.2 Working in the JSON file format . 4

1.2 Guide build up . 5
1.3 Understanding the basics . 6

1.3.1 Lists . 6
1.3.2 Dictionary . 6
1.3.3 Nodes and Edges . 7
1.3.4 ID’s . 7
1.3.5 Find ID’s and names from gen_dk . 7

2 Applying the basics - a step by step guide 8
2.1 Creating json files . 9

3 The Building Operation and Energy Consumption 18
3.1 Minimum requirements . 19
3.2 The creation of new nodes and edges . 20

3.2.1 Creating a new operation node and edge to ElectricitySource and HeatingSource
(Operation) . 21

3.2.2 Creating a new edge between building and operation node (BuildingToOperation) . . 22
3.2.3 Creating a new operation utility node (OperationUtility) 23
3.2.4 Creating a new operation scenario node (OperationScenario) 24
3.2.5 Creating a new edges between operation utility and operation scenarios node (Has-

Scenario) . 25

4 The Building Model 26
4.1 Minimum requirements . 27

4.1.1 Find ID’s and names from gen_dk . 27
4.2 The creation of new nodes and edges . 28

4.2.1 Creating a new project node (Project) . 29
4.2.2 Creating a new building node (Building) . 30
4.2.3 Creating a new edge between project and building node (MainBuilding) 31
4.2.4 Creating a new edge between a new building and root node (BuildingToRoot) 32
4.2.5 Creating a new embodied root node (EmbodiedRoot) 33
4.2.6 Creating a new edge between a embodied root and model (RootToModel) 33
4.2.7 Creating a new edge between a embodied root and construction process (RootTo-

ConstructionProcess) . 34
4.2.8 Creating a new edge between a new building and operation node (BuildingToOperation) 34
4.2.9 Create a new element node (Element) . 35

2

4.2.10 Create a new edge between ElementCategory and Element node (CategoryToElement 36
4.2.11 Create a new construction node (Construction) . 37
4.2.12 Create a new edge between element and construction node (ElementToConstruction 38
4.2.13 Create a new edge between ElementCategory and construction node (CategoryTo-

Construction) . 39
4.2.14 Creating a new product node (Product) . 40
4.2.15 Create a new edge between construction and product node (ConstructionToProduct 41
4.2.16 Create a new stage node (Stage) . 42
4.2.17 Create a new edge between product and stage node (ProductToStage) 43
4.2.18 Create a new edge between stage category and stage node (CategoryToStage) . . . 44

5 The import function in LCAbyg 45
5.1 Import a json project in LCAbyg . 46

5.1.1 Check the code . 47
5.2 Import json components in LCAbyg . 48

A Detailed Overview 51

B JSON files (import_example) 53
B.1 The Building Operation and Energy Consumption . 54
B.2 The Building Model . 56

C Choices in Building node 61
C.1 Building type (bygningstype) . 62
C.2 Calculation mode (beregningstype) . 63

D Troubleshooting 64
D.1 Debug information in LCAbyg . 65

D.1.1 LCAbyg.exe (debug tool) . 65

E ID external source 68
E.1 ID from external source . 69

Disclaimer

LCAbyg is under constant development and for that reason, there may be changes in the json files. Al-
ways remember to download the latest version of LCAbyg and download the latest version of the JSON
guide and JSON examples, which you can find here https://www.lcabyg.dk/da/download-legacy/.

You can sign up for the LCAbygnewsletter to receive updates and bug fixes here https://www.lcabyg.dk/news-
letter

Frequently asked questions can be found at LCAbyg website here: https://lcabyg.dk/da/faq/

If you cannot find an answer to your questions or if you have feedback, write to the LCAbyg mailbox
lcabyg@build.aau.dk.

Readme

Before starting, you should carefully read the instructions in this chapter. In the zip file, containing this
JSON guide, you will find several other important folders. E.g. the import_example folder contains several
JSON files which the user can edit and add to. Furthermore, the zip file also contains a folder named
gen_dk which contains all the IDs and names from GenDK (the library in LCAbyg), see Figure 1.

Figure 1: The contents of the zip file

Before starting, you should unzip (extract) the import_example.zip file and locate it in the LCAbyg 5.3.1.0
folder. When downloading LCAbyg you chose the location of the LCAbyg 5.3.1.0 folder. In the vast majority
of the cases, the folder is located in C:\Program Files\SBi.

1

https://www.lcabyg.dk/da/download-legacy/
https://www.lcabyg.dk/news-letter
https://www.lcabyg.dk/news-letter
https://lcabyg.dk/da/faq/
lcabyg@build.aau.dk

Chapter 1

Introduction and Guide build up

1.1 Introduction

This JSON guide for LCAbyg version 5 is about the technology used behind the program for quicker import
and export in LCAbyg. LCAbyg is a tool used to model a Life Cycle Assessment (LCA) which calculates the
building’s environmental profile and resource consumption.

In LCAbyg version 3.2 it is possible to create a third party integration i.e. connecting LCAbygwith a program
developed by others than BUILD. In the new version of LCAbyg this integration has been reestablished. In
LCAbyg 3.2 the xml file format is used for this integration whereas LCAbyg 5.0 the open file format JSON
is used.
Before reading the JSON guide for LCAbyg we recommend you to read the newest user guide for LCAbyg.
The guide is in Danish and is available at https://www.lcabyg.dk/da/vejledning/brugervejledning-lcabyg-
5/ (LCAbyg 5 brugervejledning).

1.1.1 The JSON file format

JSON stands for JavaScript Object Notation and is an open standard for storing and exchanging data.
LCAbyg contains several JSON files in which the user, to some extent, can use and modify. E.g., when
creating a construction (konstruktion) in LCAbyg, a JSON file is made and placed in the representative
folder which is linked to LCAbyg, see Figure 1.1 and 1.2.

Figure 1.1: Simplification of how the JSON files are linked to LCAbyg

Figure 1.2: The connection between LCAbyg and a JSON file. Left: a new construction is made in a JSON
file and connected to a building part. Right: the new construction is visible in LCAbyg

3

https://www.lcabyg.dk/da/vejledning/brugervejledning-lcabyg-5/
https://www.lcabyg.dk/da/vejledning/brugervejledning-lcabyg-5/

1.1.2 Working in the JSON file format

A project template named Import Example is created with the purpose that the user can work and edit in
the json files located in the associated folder (named import_example). This guide is based on this project
template, and therefore we recommended that you work in this template, to begin with. Remember the
folder is not visible before you have followed the steps in Chapter 2.

Figure 1.3: Project template the user can work in in LCAbyg

The project template, import_example, is located in the zip file when downloading the JSON guide. The
import_example folder holds several json files, which you can work in and modify, see Figure 1.4.

Before you start working on the JSON files, download a text editor where you can work in the JSON format.
We recommend the text editor Notepad++which can be found at https://notepad-plus-plus.org/downloads/v7.9/
or Kate (if using a Mac computer) which can be found at https://kate-editor.org/.

Figure 1.4: Where to find the import_examples

4

https://notepad-plus-plus.org/downloads/v7.9/
https://kate-editor.org/

1.2 Guide build up

The JSON guide for LCAbyg is divided into five main chapters each containing essential information and
knowledge about the JSON files behind LCAbyg. Appendix A gives a detailed overview of the possible
nodes and edges for an LCAbyg JSON project.

Chapter 1, Introduction and Guide build up, introduces the guide and the guide build up. This chapter
also explains the basics of the JSON files and format.

Chapter 2, Applying the basics - a step-by-step guide, introduces the basics for the JSON files for
LCAbyg, e.g. how Nodes and Edges work, the folder and files structure, as well as the Nodes and Edges,
build up in LCAbyg.

Chapter 3, The Building Operation and Energy Consumption, focuses on how to create Nodes and Edges
within the operation and energy consumption, e.g. utility sources (forsyningskilder) hereby electricity sup-
ply (elforsyning), heat supply (varmeforsyning), etc.

Chapter 4, The Building Model, focuses on how to create Nodes and Edges within the Building model, e.g.
elements (bygningsdele), constructions (konstruktioner), products (bygningsvarer), stages (faser), etc.

Chapter 5, Importing JSON, explains how to work to import JSON projects with one or more scenarios,
individual JSON components, and their respective results and computed quantities.

Appendix A.1, Detailed overview, shows a diagram of how entire LCAbyg is structured in JSON. Not all
nodes and edges listed in this appendix are needed to model a project in the LCAbyg JSON format.

Appendix A.2, JSON files, shows a full list of all the JSON files, from which, the content can be copy-
pasted. These codes are identical to the JSON files found in the import_example.

If you want to read about how to export JSON files and results, please read the guide JSON ex-
port guide), which can be found here: https://www.lcabyg.dk/da/usermanual/brugervejledning-
andre-vaerktojer/ If you want to know more about the scenario function in the JSON
format, please read the guide JSON scenarios guide, which can be found here:
https://www.lcabyg.dk/da/usermanual/brugervejledning-andre-vaerktojer/

5

https://www.lcabyg.dk/da/usermanual/brugervejledning-andre-vaerktojer/
https://www.lcabyg.dk/da/usermanual/brugervejledning-andre-vaerktojer/
https://www.lcabyg.dk/da/usermanual/brugervejledning-andre-vaerktojer/

1.3 Understanding the basics

The json files consist of lists that contain several objects which hold a string of Nodes and Edges, see
Figure 1.5.

When creating a json file, it is important to keep track of the essential characters and indentation, as well
as their location in the file. Section 1.3.1 and Section 1.3.2 will review which characters are essential when
creating a list and a dictionary.

Figure 1.5: Simplification of the json files built up

1.3.1 Lists

The json files consist of lists. Start the list in the json file by adding “[“ in the beginning and end the code
with “]” in the end. If you want to add multiple Nodes and Edges in the same code/file this is separated by
a comma “,”. The last Node or Edge must never contain a comma. The order of Nodes and Edges does not
matter.

Example

1 [
2 Node1,
3 Edge1,
4 Node2
5]

1.3.2 Dictionary

The json files contain several dictionaries. A dictionary is an unordered collection of data values, used to
store data values like a map. The dictionaries are denoted by “ ” and hold a key/value pair. The keys must
be strings and separated from their associated values with a colon.

Example

1 {
2 "Key1": Value1,
3 "Key2": Value2
4 }

6

1.3.3 Nodes and Edges

The json files consist of Nodes and Edges. A Node can be explained as a visual representation of an entity,
whereas an edge is a visual representation of a relation. An Edge can connect two Nodes, as illustrated in
Figure 1.6.

Figure 1.6: How an Edge can connect two Nodes

1.3.4 ID’s

Each Node and Edge contains a unique ID. The ID’s follow the UUID standard 1. The ID must only be used
once when creating new Nodes and Edges. These IDs are later used to refer to each other e.g. when
referring to an Edge between two Nodes.

1.3.5 Find ID’s and names from gen_dk

When creating a project template, it is possible to refer to the LCAbyg library (gen_dk), which can be found
in the folder gen_dk located in downloaded import_example folder, see Figure 1.7. The folder contains all
the IDs and names of the elements, constructions, building products, operation utilities, etc. which can
be found in LCAbyg’s library. The IDs are used when e.g. making an Edge between an existing Node and a
new Node.

Figure 1.7: The csv files located in the gen_dk folder

1https://en.wikipedia.org/wiki/Universally_unique_identifier

7

https://en.wikipedia.org/wiki/Universally_unique_identifier

Chapter 2

Applying the basics - a step by step
guide

Apply the basics from what you learned in the earlier chapter. This chapter contains a step-by-step
guide on how to set up your json files before making new Nodes and Edges within the Building Model,
the Building Operation and Energy Consumption and how to import and export json files in LCAbyg.

2.1 Creating json files

There are multiple steps in the creation of json files. The following sections will review each step.

Figure 2.1: Step-by-step guide for creating json files

Step 1 - Download LCAbyg

Download the newest version of LCAbyg at https://www.lcabyg.dk/da/download-legacy/. You have to
create a user before you can download the program. If you are using a Mac computer please read the
Download Guide for Mac at https://www.lcabyg.dk/da.

If you have an older version of LCAbyg, please make sure to download the newest version and open the
newest version of LCAbyg before working in the program.

Step 2 - Understand the user interface

Before creating constructions, building products, etc. in json files, a basic understanding of the user in-
terface in LCAbyg must be established. This guide only touches on a fraction of the understanding of the
user interface and a deeper understanding must be achieved when reading the LCAbyg guide version 5.
Figure 2.2 illustrates the basics of the user interfaces in LCAbyg 5.

Figure 2.2: User interface in LCAbyg 5

9

https://www.lcabyg.dk/da/download-legacy/
https://www.lcabyg.dk/da

Step 3 - Create a new project template

You can create a new project template like the empty project and case1. By creating a new project tem-
plate, you can change e.g., the defaults for a project in LCAbyg, which can be beneficial if you intend to
use the same template for a project over and over.

In this example, the project template named import_example has been created, which can be used and
modified by the user. The project template already contains serval json files that can be modified and
added. There are two ways to import the import_example in LCAbyg, which is described in Table 2.1.

Administration rights on the computer No administrator rights on your computer
Follow step 3.1, 3.1.1, 3.2, 3.3, 3.4 Follow step 3.1, 3.1.2-3.13, 3.2, 3.3, 3.4

Table 2.1: The two ways to import import_example

Step 3.1 - Find the LCAbyg 5 folder

The first step in the creation of a new project template is to find the LCAbyg 5 folder. When download-
ing LCAbyg you chose the location of the folder. In the vast majority of cases, the folder is located in
C:\Program Files\SBi\LCAbyg 5 (64 bit) (5.3.1.0)*, see Figure 2.3. If you are using a Mac computer, please
go into programs, left click on the LCAbyg logo, click ”vis indholdet af pakken”, click on the contents folder,
and then click on the MacOS folder.

*The last number is the versionnumber andchangewhenyoudownloadnewer versions of theprogram.

Figure 2.3: Find the LCAbyg 5 folder on a Windows computer

10

Step 3.1.1 - Administration rights on the computer

After locating the LCAbyg 5 folder, place the project template folder named import_example in the LCAbyg
5 folder to obtain the same path. The import_example folder is located in the zip file together with this
JSON Guide (see Section 1.1.2). Unzip the import_example folder and open the import_example folder
and copy the folder path. Inset the copied folder path in your Notepad or a Word document as you will
need this path later in Step 3.2.

Note: You can create your project template by creating a folder like import_example, name the folder and
locate it in the LCAbyg 5 folder. We recommend working with the import_example, to begin with.

11

Step 3.1.2 - No administrator rights on the computer

If you do not have administrator rights, please follow the following steps. Copy the engine.yaml file from
LCAbyg 5 folder in which you found in Step 3.1.

Step 3.1.3 - Find the LCAbyg 5 folder

In your file explorer, write %appdata% in address bar. The folder named LCAbyg 5 (not the same folder as
in Step 3.1) will appear.

Open the LCAbyg 5 folder and place the copied engine.yaml file in the folder. If you are using a Mac
computer you must do the following steps, to find the %appdata% folder:

1. Open Finder.

12

2. Click ”Go” on the menu bar.

3. Press and hold the “option/alt” key.

4. Click the ”Library” shortcut which appears.

5. Click on the folder Application Support

6. Create the folder ”lcabyg5” and dump engine.yaml file

In the same folder as your placed the engine.yaml you must place import_example in the LCAbyg 5 folder.

Open the import_example folder and copy the folder path. Inset the copied folder path in your Notepad
or a Word document as you will need this path later in Step 3.2.

13

Step 3.2 - Open engine.yaml file in a text editor

Open the file engine.yaml in a text editor. Remember if you have no administrator rights you have placed
the engine.yaml file in another LCAbyg 5 folder, see Figure 2.5.

Figure 2.4: Find and open the engine.yaml (With administrator rights).

Figure 2.5: Find and open the engine.yaml (No administrator rights).

14

Step 3.3 - Copy and paste an existing template in engine.yaml file

After opening the engine.yaml file you must create a new project template. Copy the following text in the
box beneath and place it after the existing project templates in the engine.yaml file. Replace the Json-
Folder path with the folder path you copied and placed in your Notepad or Word document from Step 3.1.3.

1 ---
2 project_templates:
3 - name:
4 English: Empty project
5 Danish: Tomt projekt
6 res:
7 - Embedded: 78e25193-ae91-4b6e-94d5-e87e330a423d
8 - Embedded: b5ca0ecf-52fc-461c-babe-7c763dc067ef
9 - name:
10 Danish: "Enfamiliehus , eksempelbygning"
11 English: "Single-family house, example"
12 res:
13 - Embedded: be875f31-8a08-4494-8f9b-a521645b8ad3
14 - Embedded: b5ca0ecf-52fc-461c-babe-7c763dc067ef
15

16 - name:
17 Danish: "Test"
18 English: "Test"
19 res:
20 - JsonFolder: C:\Program Files\SBi\LCAbyg 5 (64 bit) (5.3.0.0)\import_example
21 - Embedded: b5ca0ecf-52fc-461c-babe-7c763dc067ef

Listing 2.1: engine.yalm

If you want to change the name of the project template, enter a new name in the quotation marks (“ ”) in
line 17 and 18. Remember the folder path created in Step 3.1.1 or 3.1.2 should be placed in line 20.

Remember to save the engine.yaml file after placing and editing the new project template. If the save
logo turns red, you have not saved the changes in the file. Save the file by clicking on the save logo in the
menu.

Step 3.4 - Check if the new project template appears in LCAbyg

Check if the new project template appears in LCAbyg by opening the program as usual. Click on the “Opret
nyt project” logo in the menu in the upper left corner. Click on “Ny” and then check if your new project
template appears.

15

Note: If you have created your own project template and therefore not used the import_example an error
will appear and tell that the program is missing a node.

Note: You can also open a new project using the debug version of LCAbyg named “lcabyg_debug.exe”.
Read more about how to troubleshoot in Appendix D – Troubleshooting.

16

Step 4 - Set up the JSON file

Step 4.1 - Set up a JSON file

Start by opening your text editor. Click on the file and then Save As. Name your file with the extension
“.json” and save your file as a JSON file (*.json) in the folder named import_example which is located in
the LCAbyg 5 folder. If you have created a new project template folder, you must locate your JSON files in
the new folder.

Note: Remember to set the Encoding default to UTF-8. You will find the encoding setting in the top bar
’Encoding’.

17

Chapter 3

The Building Operation and Energy
Consumption

3.1 Minimum requirements

The minimum requirements for the building operation and energy consumption can be found in the sim-
plified Figure 3.1. You can find the full overview of the all Nodes and Edges in Appendix A.

When creating an Edges between e.g. the Building and Operation you must also create Edges between
the Operation and Operation Utility as well as the Operation Utility and the Operation Scenario.

Figure 3.1: Edges required for the building and operation

If you want to connect new Nodes or connect a new Node with an existing Node from the gen_dk library
a new Edge must be created, see Figure Figure 3.2.

Figure 3.2: Examples on connections between Nodes and Edge

19

3.2 The creation of new nodes and edges

In the following sections, it is presented how to make and set up new nodes for operation, utilities etc.
as well as how to create edges between them. The code can be copied directly from the JSON files in
Appendix B. Remember to save all JSON files in the import_example folder, see Figure 2.4 and Figure 2.5
(depending on whether or not you have administrator rights)

Figure 3.3: Setup example for template for Nodes and Edges

A good rule of thumb
In most cases, you can look at edge names and see which order you need to refer to the ID numbers. E.g.
in the example above where we have an edge named Building To Operation . The first id you refer to is

Building ID number where the next ones are Operation ID number .

20

3.2.1 Creatinganewoperationnodeandedge toElectricitySourceandHeatingSource
(Operation)

When creating a new operation, an edge between an operation and operation utility must be created for
both the edge HeatingSource and the edge ElectricitySource.

Before creating the node, a list that contains a dictionary is created, as illustrated in Figure 1.5. After this
step, a new node can be created in the JSON file.

In the following table, an example of how to create a new operation node is explained. You can use the
example as a template when creating a new operation node in your JSON file. Please note that the text
highlighted with yellow in the example requires your input. Find the full json files in Appendix B.1 or in the
import_example (Operation.json).

21

3.2.2 Creating a new edge between building and operation node (BuildingToOpera-
tion)

An edge between a building and an operation must be created.

Before creating the edge, a list that contains a dictionary is created, as illustrated in Figure 1.5. After this
step, a new edge can be created in the JSON file.

In the following table, an example of how to create a new edge between the building and operation is
explained. You can use the example as a template when creating a new edge in your JSON file. Please
note that the text highlighted with yellow in the example requires your input. Find the full JSON file in
Appendix B.1 or in the import_example (Building.json).

22

3.2.3 Creating a new operation utility node (OperationUtility)

Start by creating a new JSON file and save it in the import_example.

Utility type can either be set to Electricity or Heating for calculationmethod “Normal”. The other calculation
methods “DNGB” and “SC” (Sustainability Class) specific utility types are required and are thus hardcoded
in the LCAbyg. See Appendix C.2 for detailed explanation of Calculation Method and Operation Utility.

Before creating the node, a list that contains a dictionary is created, as illustrated in Figure 1.5. After this
step, a new node can be created in the JSON file.

In the following table, an example of how to create a new operation utility node is explained. You can use
the example as a template when creating a new operation utility node in your JSON file. Please note that
the text highlighted with yellow in the example requires your input. Find the full JSON files in Appendix B.1
or in the import_example (OperationUtility).

23

3.2.4 Creating a new operation scenario node (OperationScenario)

Start by creating a new json file and save it in the import_example.

Before creating the node, a list that contains a dictionary is created, as illustrated in Figure 1.5. After this
step, a new node can be created in the json file.

In the following table, an example of how to create a newoperation scenario node is explained. You can use
the example as a template when creating a new operation scenario node in your json file. Please note that
the text highlighted with yellow in the example requires your input. Find the full json files in Appendix B.1
or in the import_example (OperationScenario).

24

3.2.5 Creating a new edges between operation utility and operation scenarios node
(HasScenario)

An edge between an operation utility and operation scenarios must be created.

Start by creating a new json file and save it in the import_example folder.

Before creating the edge, a list that contains a dictionary is created, as illustrated in Figure 1.5. After this
step, a new edge can be created in the json file.

In the following table, an example of how to create a new edge between the building and operation is
explained. You can use the example as a template when creating a new edge in your json file. Please
note that the text highlighted with yellow in the example requires your input. Find the full json files in
Appendix B.1 or in the import_example (HasScenario).

25

Chapter 4

The Building Model

4.1 Minimum requirements

The minimum requirement can be found in Figure 4.1. You can find the full overview of the all Nodes and
Edges in Appendix A.

When creating an edge between e.g. the Project and the Building you must create an edge between e.g.
a Stage Category and a new Stage or an Element Category and a new Element. You must use the Stage
Categories and Element Categories ID’s, which can be found in the library of LCAbyg in the gen_dk folder
located in the zip files with the json guide.

Figure 4.1: Edges required for the building model

4.1.1 Find ID’s and names from gen_dk

The LCAbyg library (gen_dk) can be found in the folder gen_dk located in the LCAbyg 5 folder. The folder
contains the IDs and names of all the elements, constructions, building products, operation utilities, etc.
which can be found in the library of LCAbyg. The IDs are used when e.g. making an Edge between an
existing Node and a new Node.

27

4.2 The creation of new nodes and edges

In the following sections, it is presented how to make and set up new nodes for elements, constructions
etc. as well as how to create edges between them.

Figure 4.2: Setup example for template for Nodes and Edges

28

4.2.1 Creating a new project node (Project)

Start by creating a new json file and save it in the import_example.

Before creating the node, a list that contains an object is created, as illustrated in Figure 1.5. After this
step, a new node can be created in the json file.

In the following table, an example of how to create a new project node is explained. You can use the exam-
ple as a template when creating a new project in your json file. Please note that the text highlighted with
yellow in the example requires your input. Find the full json files in Appendix B.2 or in the import_example
(Project.json).

29

4.2.2 Creating a new building node (Building)

Start by creating a new json file and save it in the import_example.

Before creating the node, a list that contains an object is created, as illustrated in Figure 1.5. After this
step, a new node can be created in the json file.

In the following table, an example of how to create a new building node is explained. You can use the
example as a template when creating a new element in your json file. Please note that the text high-
lighted with yellow in the example requires your input. Find the full json files in Appendix B.2 or in the
import_example (Building.json).

*See Appendix C.2 for a detailed description of calculation modes.

30

4.2.3 Creating a new edge between project and building node (MainBuilding)

An edge between a new project and a building must be created.

Start by creating a new json file and save it in the import_example folder. Before creating the edge, a list
that contains an object is created, as illustrated in Figure 1.5. After this step, a new edge can be created
in the json file.

In the following table, an example of how to create a new edge between a project and a building is ex-
plained. You can use the example as a templatewhen creating a newedge in your json file. Please note that
the text highlighted with yellow in the example requires your input. Find the full json files in Appendix B.2
or in the import_example (MainBuilding.json).

*Edge names can be found in Figure 4.1 or Appendix A

31

4.2.4 Creating a new edge between a new building and root node (BuildingToRoot)

An edge between a new building and a root must be created.

Start by creating a new json file and save it in the import_example folder. Before creating the edge, a list
that contains an object is created, as illustrated in Figure 1.5. After this step, a new edge can be created
in the json file.

In the following table, an example of how to create a new edge between a building and an building root
is explained. You can use the example as a template when creating a new edge in your json file. Please
note that the text highlighted with yellow in the example requires your input. Find the full json files in
Appendix B.2 or in the import_example (BuildingToRoot.json).

*Edge names can be found in Figure 4.1 or Appendix A

32

4.2.5 Creating a new embodied root node (EmbodiedRoot)

Start by creating a new json file and save it in the import_example.

In the following table, an example of how to create a new embodied root node is explained. You can
use the example as a template when creating a new element in your json file. Please note that the text
highlighted with yellow in the example requires your input. Find the full json files in Appendix B.2 or in the
import_example (EmbodiedRoot.json).

4.2.6 Creating a new edge between a embodied root and model (RootToModel)

An edge between the embodied root and the model must be created.

Start by creating a new json file and save it in the import_example folder. Before creating the edge, a list
that contains an object is created, as illustrated in Figure 1.5. After this step, a new edge can be created
in the json file.

In the following table, an example of how to create a new edge between a embodied root and the model
is explained. You can use the example as a template when creating a new edge in your json file. Please
note that the text highlighted with yellow in the example requires your input. Find the full json files in
Appendix B.2 or in the import_example (EmbodiedRoot.json).

33

4.2.7 Creating anewedgebetweenaembodied root andconstructionprocess (Root-
ToConstructionProcess)

An edge between the embodied root and the model must be created.

Start by creating a new json file and save it in the import_example folder. Before creating the edge, a list
that contains an object is created, as illustrated in Figure 1.5. After this step, a new edge can be created
in the json file.

In the following table, an example of how to create a new edge between an embodied root and the con-
struction process is explained. You can use the example as a template when creating a new edge in your
json file. Please note that the text highlighted with yellow in the example requires your input. Find the full
json files in Appendix B.2 or in the import_example (EmbodiedRoot.json).

4.2.8 Creating a new edge between a new building and operation node (BuildingTo-
Operation)

An edge between a new building and operation must be created as described in 3.2.2.

34

4.2.9 Create a new element node (Element)

Start by creating a new json file and save it in the import_example.

Before creating the node, a list that contains an object is created, as illustrated in Figure 1.5. After this
step, a new edge can be created in the json file.

In the following table, an example of how to create a new element node is explained. You can use the
example as a template when creating a new element in your json file. Please note that the text high-
lighted with yellow in the example requires your input. Find the full json files in Appendix B.2 or in the
import_example (Element.json).

Note: An Edge needs to be connected between the Element Node and Element Category Node.

*Edge names can be found in Figure 4.1 or Appendix A

35

4.2.10 Create a new edge between ElementCategory and Element node (Category-
ToElement

An edge between a new element and an element category must be created.

Start by creating a new json file and save it in the import_example folder. Before creating the edge, a list
that contains an object is created, as illustrated in Figure 1.5. After this step, a new edge can be created
in the json file.

In the following table, an example of how to create a new edge between an element and an element
category is explained. You can use the example as a template when creating a new edge in your json file.
Please note that the text highlighted with yellow in the example requires your input. Find the full json files
in Appendix B.2 or in the import_example (CategoryToElement.json).

Note: IDs and names for the category elements can be found in folder gen_dk in the csv file named
element_categories.

* Edge names can be found in Figure 4.1 or Appendix A

36

4.2.11 Create a new construction node (Construction)

Start by creating a new json file and save it in the import_example.

Before creating the node, a list that contains an object is created, as illustrated in Figure 1.5. After this
step, a new node can be created in the json file.

In the following table, an example of how to create a new construction node is explained. You can use
the example as a template when creating a new construction in your json file. Please note that the text
highlighted with yellow in the example requires your input. Find the full json files in Appendix B.2 or in the
import_example (Construction.json).

Note: No Edge needs to be connected between the construction node and the element or/and element
category.

37

4.2.12 Create a new edge between element and construction node (ElementToCon-
struction

An edge between a construction and an element can be created but is not a requirement. Start by creating
a new json file and save it in the import_example folder. Before creating the edge, a list that contains an
object is created, as illustrated in Figure 1.5. After this step, a new edge can be created in the json file.

In the following table, an example of how to create a new edge between a construction and an element
is explained. You can use the example as a template when creating a new edge in your json file. Please
note that the text highlighted with yellow in the example requires your input. Find the full json files in
Appendix B.2 or in the import_example (ElementToConstruction.json).

Note: No Edge needs to be connected between the construction node and the element or/and element
category

* Edge names can be found in Figure 4.1 or Appendix A

38

4.2.13 Create a new edge between ElementCategory and construction node (Cate-
goryToConstruction)

An edge between a new construction and an element category must be created.

Start by creating a new json file and save it in the import_example folder. Before creating the edge, a list
that contains an object is created, as illustrated in Figure 1.5. After this step, a new edge can be created
in the json file.

In the following table, an example of how to create a new edge between a construction and an element
category is explained. You can use the example as a template when creating a new edge in your json file.
Please note that the text highlighted with yellow in the example requires your input. Find the full json files
in Appendix B.2 or in the import_example (CategoryToConstruction.json).

Note: IDs and names for the element category can be found in folder gen_dk in the csv file named ele-
ment_categories (see Figure 1.7).
Note: No Edge needs to be connected between the construction node and the element or/and element
category

* Edge names can be found in Figure 4.1 or Appendix A

39

4.2.14 Creating a new product node (Product)

Start to create a new json file and save it in the import_example.

Before creating the node, a list that contains an object is created, as illustrated in Figure 1.5. After this
step, a new node can be created in the json file.

In the following table, an example of how to create a new product node is explained. You can use the
example as a template when creating a new product in your json file. Please note that the text high-
lighted with yellow in the example requires your input. Find the full json files in Appendix B.2 or in the
import_example (Product.json).

You can find detailed information about the uncertainty factors in the LCAbyg 5.2 user guide and in the
guide ”DGNB Certificerings system”. Both guides can be downloaded from this page:
https://www.lcabyg.dk/da/vejledning/brugervejledning-lcabyg-5/

Note: No Edge need to be connected between the product node and the construction node

40

https://www.lcabyg.dk/da/vejledning/brugervejledning-lcabyg-5/

4.2.15 Create a new edge between construction and product node (ConstructionTo-
Product

An edge between a product and construction can be created but is not a requirement.

Start by creating a new json file and save it in the import_example folder. Before creating the edge, a list
that contains an object is created, as illustrated in Figure 1.5. After this step, a new edge can be created
in the json file.

In the following table, an example of how to create a new edge between a product and construction is
explained. You can use the example as a template when creating a new edge in your json file. Please
note that the text highlighted with yellow in the example requires your input. Find the full json files in
Appendix B.2 or in the import_example (ConstructionToProduct.json).

Note: IDs and names for the construction can be found in folder gen_dk in the excel file named construc-
tions (see Figure 1.7).

* Edge names can be found in Figure 4.1 or Appendix A

** The demolition takes place either here and now or after a number of years if a delayed start is chosen

*** A delayed start is chosen when the product is demolished and added in the future

41

4.2.16 Create a new stage node (Stage)

Start by creating a new json file and save it in the import_example.

Before creating the node, a list which contains an object is created, as illustrated in Figure 1.5. After this
step a now node can be created in the json file.

In the following table, an example of how to create a new stage node is explained. You can use the example
as a template when creating a new product in your json file. Please note that the text highlighted with
yellow in the example requires your input. Find the full json files in Appendix B.2 or in the import_example
(Stage.json).

* Add the stage(s) in the unique name to make it easier for the user to navigate in the program, e.g.:
Concrete (A1-A3), Concrete (C3), etc.

** Select one of the following units (written in all caps) to declare you product or material as KG, M, M2, M3,
or STK (in English = pieces).

*** The quantity stated together with the declared unit.

**** See Appendix E.1.

42

4.2.17 Create a new edge between product and stage node (ProductToStage)

An edge between a product and stage must be created.

Start by creating a new json file and save it in the import_example folder. Before creating the edge, a list
that contains an object is created, as illustrated in Figure 1.5. After this step, a new edge can be created
in the json file.

In the following table, an example of how to create a new edge between a product and stage is explained.
You can use the example as a template when creating a new edge in your json file. Please note that the
text highlighted with yellow in the example requires your input. Find the full json files in Appendix B.2 or
in the import_example (ProductToStage.json).

Note: IDs and names for the stage can be found in folder gen_dk in the excel file named stages.

Edge names can be found in Figure 4.1 or Appendix A

43

4.2.18 Create anewedgebetweenstagecategory and stagenode (CategoryToStage)

An edge between a stage category and a stage must be created if you are modelling stages.

Start by creating a new json file and save it in the import_example folder. Before creating the edge, a list
that contains a dictionary is created, as illustrated in Figure 1.5. After this step, a new edge can be created
in the json file.

In the following table, an example of how to create a new edge between a stage category and stage is
explained. You can use the example as a template when creating a new edge in your json file. Please
note that the text highlighted with yellow in the example requires your input. Find the full json files in
Appendix B.2 or import_example (CategoryToStage.json).

Note: IDs and names for the stage categories can be found in folder gen_dk in the CSV file named
stage_categories.

44

Chapter 5

The import function in LCAbyg

5.1 Import a json project in LCAbyg

When importing json files in LCAbyg it is recommended to open the program using LCAbyg.exe. LCAbyg
is found in the same folder as the LCAbyg program C:\Program Files\SBi\LCAbyg 5 (64 bit) (5.2.1.0)*.

Once LCAbyg is opened, you simply click on “Fil” and then “Ny” and select your project from the list, see
the example in Figure 5.1.It is possible to modify the building project in LCAbyg after it is imported from
the json files.

*The last number is the versionnumber andchangewhenyoudownloadnewer versions of theprogram.

Figure 5.1: Import a json project in LCAbyg

46

5.1.1 Check the code

To check if the code is correct, you must do the following steps, see Figure 5.2.

Figure 5.2: How to check your json code. See Appendix D for troubleshooting

47

5.2 Import json components in LCAbyg

Once you have opened a project in LCAbyg you can import a folder containing json components. As a
minimum, the folder must contain an “element.json”-file as described in Section 4.2.9. Please note that
the folder must not contain components with the same id.

It is recommended to open the program using LCAbyg.exe. LCAbyg is found in the same folder as the
LCAbyg program C:\Program Files\SBi\LCAbyg 5 (64 bit) (5.2.1.0)*. Read more about how to use the
LCAbyg.exe in Appendix D.1.1

*The last number is the versionnumber andchangewhenyoudownloadnewer versions of theprogram.

Please follow the next steps if you want only to import json components and not a complete json project.

Step 1 - Go to ”Importer komponenter fra json”

Click on the menu “Fil” and then “Importer komponenter fra json”.

48

Step 2 - Locate the folder

Select the path or locate your folder containing the json components you want to import, see the example
below. See the folder “import_component_element_example” for an example of a simple folder struc-
ture that only contains one new element. See Appendix B.2 on how to create more nodes and edges for
constructions, products, and phases.

49

Step 3 - Double click to select the folder

The image below shows exactly how the folder should appear when selecting it for import. If the folder is
not selected correctly, then LCAbyg will not be able to work.

Note: If the folder may appear to be empty this should just be ignored as it does not influence the import-
function.

50

Appendix A

Detailed Overview

Figure A.1: Detailed overview of the how LCAbyg is structured in json

52

Appendix B

JSON files (import_example)

B.1 The Building Operation and Energy Consumption

1 [
2 {
3 "Node": {
4 "Operation": {
5 "id": "0338d31e -3876-440d-a88c-2daa2dd81942",
6 "electricity_usage": 17.3,
7 "heat_usage": 0.0,
8 "electricity_production": 0.0
9 }
10 }
11 },
12 {
13 "Edge": [
14 {
15 "HeatingSource": "6b4e569e -cc28 -49f4-9f3a-fb042e66b158"
16 },
17 "0338d31e -3876-440d-a88c-2daa2dd81942",
18 "e967c8e7 -e73d -47f3-8cba -19569ad76b4d"
19]
20 },
21 {
22 "Edge": [
23 {
24 "ElectricitySource": "f6055900 -f9b5 -441f-b15e-6e79deac0224"
25 },
26 "0338d31e -3876-440d-a88c-2daa2dd81942",
27 "e967c8e7 -e73d -47f3-8cba -19569ad76b4d"
28]
29 }
30]

Listing B.1: Operation.json

1 [
2 {
3 "Edge": [
4 {
5 "BuildingToOperation": "81305021-5571-4fbb-917b-b2f049d61420"
6 },
7 "dcb10ab8 -621d-4640-bc9a-1f5c1964199a",
8 "0338d31e -3876-440d-a88c-2daa2dd81942"
9]
10 }
11]

Listing B.2: BuildingToOperation.json

1 [
2 {
3 "Node": {
4 "OperationUtility": {
5 "id": "9244ddc3-b353 -48ed-9dec-2f1d4fe6120f",
6 "name": {
7 "English": "Test",
8 "German": "Test",
9 "Danish": "Test"
10 },
11 "util_type": "Electricity",
12

13 "data_points": {
14 "2020":{
15 "ADPF": 1896.78,
16 "GWP": 356.634,
17 "POCP": 0.0236371,

54

18 "EP": 0.0999654,
19 "SER": 0.0,
20 "SENR": 0.0,
21 "PER": 1111.0,
22 "PENR": 2157.82,
23 "ADPE": 0.00146681,
24 "AP": 0.378718,
25 "ODP": 3.79874e-12
26 }
27 }
28 }
29 }
30 }
31]

Listing B.3: OperationUtility.json

1 [
2 {
3 "Node": {
4 "OperationScenario": {
5 "id": "8c83dda7 -0d26-44b1-9acb-d67b85b6e0d4",
6 "name": {
7 "Danish": "Test",
8 "English": "Test",
9 "German": "Test"
10 },
11

12 "description": "Test"
13 }
14 }
15 }
16]

Listing B.4: OperationScenario.json

1 [
2 {
3 "Edge": [
4 {
5 "HasScenario": "c98e8554 -103b-4b63-85c1-611be7cae33b"
6 },
7 "9244ddc3-b353 -48ed-9dec-2f1d4fe6120f",
8 "8c83dda7 -0d26-44b1-9acb-d67b85b6e0d4"
9]
10 }
11]

Listing B.5: HasScenario.json

55

B.2 The Building Model

1 [
2 {
3 "Node": {
4 "Project": {
5 "id": "29267fbd-a31d -40b8-a904-c37e21538e05",
6 "name": {
7 "Danish": "Test eksempel"
8 },
9 "address": "Testvej 1, 1111 Testbyen",
10 "owner": "Test",
11 "lca_advisor": "Test",
12 "building_regulation_version": "BR2018"
13 }
14 }
15 }
16]

Listing B.6: Project.json

1 [
2 {
3 "Node": {
4 "Building": {
5 "id": "dcb10ab8 -621d-4640-bc9a-1f5c1964199a",
6 "scenario_name": "Original bygningsmodel",
7 "locked": "Unlocked",
8 "description": {
9 "English": "Test",
10 "German": "Test",
11 "Danish": "Test",
12 "Norwegian": "Test"
13 },
14 "building_type": "Other",
15 "heated_floor_area": 0.0,
16 "gross_area": 0.0,
17 "integrated_garage": 0.0,
18 "external_area": 0.0,
19 "gross_area_above_ground": 0.0,
20 "storeys_above_ground": 0,
21 "storeys_below_ground": 0,
22 "storey_height": 0.0,
23 "initial_year": 2020,
24 "calculation_timespan": 50,
25 "calculation_mode": "Normal",
26 "outside_area": 0.0,
27 "plot_area": 0.0,
28 "energy_class": "LowEnergy"
29 }
30 }
31 }
32]

Listing B.7: Building.json

1 [
2 {
3 "Edge": [
4 {
5 "MainBuilding": "8a6f5c9c -8ad1-48f2-9991-74acb58c4e82"
6 },
7 "29267fbd-a31d -40b8-a904-c37e21538e05",
8 "dcb10ab8 -621d-4640-bc9a-1f5c1964199a"
9]
10 }

56

11]

Listing B.8: MainBuilding.json

1 [
2 {
3 "Edge": [
4 {
5 "BuildingToRoot": "48f2019b -8954-41d6-b6d2-2a9f3f2334d2"
6 },
7 "dcb10ab8 -621d-4640-bc9a-1f5c1964199a",
8 "216cf5d6 -3e9d-43ec-b0d8-5aee02240c28"
9]
10 }
11]

Listing B.9: BuildingToRoot.json

1 [
2 {
3 "Node": {
4 "Element": {
5 "id": "e2a8a510 -d492-4d10-8bd5-ffca8e47b152",
6 "name": {
7 "Danish": "Test element",
8 "English": "",
9 "German": ""
10 },
11 "source": "User",
12 "comment": "",
13 "enabled": true,
14 "excluded_scenarios": []
15 }
16 }
17 }
18]

Listing B.10: Element.json

1 [
2 {
3 "Node": {
4 "EmbodiedRoot": {
5 "id": "216cf5d6 -3e9d-43ec-b0d8-5aee02240c28"
6 }
7 }
8 },
9 {
10 "Edge": [
11 {
12 "RootToModel": "fc48c913 -a28f-4bdf-a6f3-fa9d6124f957"
13 },
14 "216cf5d6 -3e9d-43ec-b0d8-5aee02240c28",
15 "aeefab8a -e825-4d14-b0c3-e87b7759e5b2"
16]
17 },
18 {
19 "Edge": [
20 {
21 "RootToConstructionProcess": "a8a3fa25 -694a-4b93-8a0a-bd73a8fb1d7a"
22 },
23 "216cf5d6 -3e9d-43ec-b0d8-5aee02240c28",
24 "349738da-9747-4d5c-b508-2a810317166f"
25]
26 }

57

27]

Listing B.11: EmbodiedRoot.json

1 [
2 {
3 "Node": {
4 "Construction": {
5 "id": "45f040ac -158e-4bcf-87bc-795a6dfbc2d9",
6 "name": {
7 "Danish": "Test konstruktion",
8 "English": "Test construction"
9 },
10 "unit": "M",
11 "source": "User",
12 "comment": "Test",
13 "locked": true
14 }
15 }
16 }
17]

Listing B.12: Construction.json

1 [
2 {
3 "Edge": [
4 {
5 "ElementToConstruction": {
6 "id": "6e095089 -b2c3-4f35-9a31-e57923ca8cae",
7 "amount": 59.9,
8 "enabled": true,
9 "excluded_scenarios": []
10 }
11 },
12 "e2a8a510 -d492-4d10-8bd5-ffca8e47b152",
13 "45f040ac -158e-4bcf-87bc-795a6dfbc2d9"
14]
15 }
16]

Listing B.13: ElementToConstruction.json

1

2 [
3 {
4 "Edge": [
5 {
6 "CategoryToConstruction": {
7 "id": "bb4be81f -7779-4884-9d8c-050f02edd3d7",
8 "layers": [
9 1
10]
11 }
12 },
13 "10a52123 -48d7-466a-9622-d463511a6df0",
14 "45f040ac -158e-4bcf-87bc-795a6dfbc2d9"
15]
16 }
17]

Listing B.14: CategoryToConstruction.json

1 [
2 {
3 "Edge": [

58

4 {
5 "ConstructionToProduct": {
6 "id": "0ff4b687 -6c6e-4007-8bd8-46ac93925697",
7 "amount": 0.44,
8 "unit": "M3",
9 "lifespan": 120,
10 "demolition": false,
11 "delayed_start": 0,
12 "enabled": true,
13 "excluded_scenarios": []
14 }
15 },
16 "45f040ac -158e-4bcf-87bc-795a6dfbc2d9",
17 "87b88977-bea0-4a70-9508-b4b49b20085a"
18]
19 }
20]

Listing B.15: ConstructionToProduct.json

1 [
2 {
3 "Node": {
4 "Stage": {
5 "id": "b70da4f1 -bfea -410c-888b-5ee358bcd36f",
6 "name": {
7 "English": "Test phase (A1-A3)",
8 "German": "Testphase (A1-A3)",
9 "Danish": "Test fase (A1-A3)"
10 },
11 "hyper_category": "Mineral building products ",
12 "comment": "",
13 "source": "User",
14 "locked": true,
15 "valid_to": "2022-01-01",
16 "stage": "A1to3",
17 "stage_unit": "M3",
18 "indicator_unit": "M3",
19 "stage_factor": 1.0,
20 "mass_factor": 1800.0,
21 "indicator_factor": 1.0,
22 "external_source": "Ökobau.dat 2020 II",
23 "external_id": "dea7df16 -f59b -4842-a66c-cb9463a58ae3",
24 "external_version": "20.19.120",
25 "external_url": "http://www.oekobaudat.de/OEKOBAU.DAT/resource/processes/dea7df16 -f59b

-4842-a66c-cb9463a58ae3?version=20.19.120",
26 "data_type": "Generic",
27 "compliance": "A1",
28 "indicators": {
29 "ADPF": 1896.78,
30 "GWP": 356.634,
31 "POCP": 0.0236371,
32 "EP": 0.0999654,
33 "SER": 0.0,
34 "SENR": 0.0,
35 "PER": 1111.0,
36 "PENR": 2157.82,
37 "ADPE": 0.00146681,
38 "AP": 0.378718,
39 "ODP": 3.79874e-12
40 }
41 }
42 }
43 }
44]

Listing B.16: Stage.json

59

1 [
2 {
3 "Edge": [
4 {
5 "ProductToStage": {
6 "id": "ef2adc40 -4ee0-415c-a5f8-c16e60100fee",
7 "excluded_scenarios": [],
8 "enabled": true
9 }
10 },
11 "87b88977-bea0-4a70-9508-b4b49b20085a",
12 "b70da4f1 -bfea -410c-888b-5ee358bcd36f"
13]
14 }
15]

Listing B.17: ProductToStage.json

1 [
2 {
3 "Edge": [
4 {
5 "CategoryToStage": "9de0f451 -f67a -449b-b1fb-e8fc32379b7d"
6 },
7 "2fb2b8ec -ac21-4d1d-85c9-98243e7c5c56",
8 "b70da4f1 -bfea -410c-888b-5ee358bcd36f"
9]
10 }
11]

Listing B.18: CategoryToStage.json

60

Appendix C

Choices in Building node

C.1 Building type (bygningstype)

Currently, ten building types exist in LCAbyg. The ten types are described in Table C.1.

Table C.1: Building types

Type Description
Office Offices
School Schools and other institutions
ResidentialBuildingSingleFamilyHouse Residential, single family housing
ResidentialBuildingMultiStoreyBuilding Residential, multi story building
ResidentialBuildingTerracedHouse Residential, terraced housing
Store Stores
Logistics Logistic building
Production Production building
Hotel Hotels and hostels
Other Buildings that don’t fall into any of the building types

The building type (“Byningstype”) can be set in the JSON file named Building, see the code snippet below.

*The full json file for the Building can be found in Appendix B.2 or in import_example folder.

62

C.2 Calculation mode (beregningstype)

Currently, three calculation modes exist in LCAbyg. The three modes are described in Table C.2.

Each of the three calculation methods are connected to the Edges ElectricitySource and HeatingSource.
If DGNB is chosen, then the DGNB Operation Reference with electricity supplement (“El tillæg”) and heat
supplement “Varme tillæg”) is generated automatically by LCAbyg.

Table C.2: Calculation modes

Mode Description
BR23 Bygningsreglement 2023 rules
Normal Normal LCAbyg rules
SC Sustainability Class (Den Frivillige Bæredygtighedsklasse)

The calculation mode (“Beregningstype”) can be set in the JSON file named Building, see the code snippet
below.

*The full json file for the Building can be found in Appendix B.2 or in import_example folder.

63

Appendix D

Troubleshooting

D.1 Debug information in LCAbyg

D.1.1 LCAbyg.exe (debug tool)

The file LCAbyg_debug.exe is a version of LCAbyg that also contains a window that shows logs and error
messages. This mode is useful for debugging errors related to the import of json files in LCAbyg.

Step 1 - Find LCAbyg.exe

The program is located together with LCAbyg in C:\Program Files\SBi\LCAbyg 5 (64 bit) (5.3.1.0)*, see
Figure D.1.

*The last number is the versionnumber andchangewhenyoudownloadnewer versions of theprogram.

Figure D.1: Location of LCAbyg.exe

65

Step 2 - Open LCAbyg.exe

Double click the file to open the program. The terminal opens and after approximately 5-10 second LCAbyg
programs opens automatically. You can now proceed to open the json project as described earlier.

Note: LCAbyg does not work if you place the curse or write inside the terminal.

Figure D.2: Opening LCAbyg in debug mode via the file “LCAbyg.exe

66

Step 3 - If you can’t open LCAbyg.exe

Go to the file explorer where LCAbyg_debug is located and type cmd and click enter This will open a
terminal that indicate errors in your engine.yalm file.

Figure D.3: Opening terminal when it is not possible to open lcabyg_debug.exe

67

Appendix E

ID external source

E.1 ID from external source

Following screenshot shows an example on an external source (Ökobau, Reinforcing steel) used when
creating a new stage

Figure E.1: Example on ID and version of external source

69

	Introduction and Guide build up
	Introduction
	The JSON file format
	Working in the JSON file format

	Guide build up
	Understanding the basics
	Lists
	Dictionary
	Nodes and Edges
	ID's
	Find ID's and names from gen_dk

	Applying the basics - a step by step guide
	Creating json files

	The Building Operation and Energy Consumption
	Minimum requirements
	The creation of new nodes and edges
	Creating a new operation node and edge to ElectricitySource and HeatingSource (Operation)
	Creating a new edge between building and operation node (BuildingToOperation)
	Creating a new operation utility node (OperationUtility)
	Creating a new operation scenario node (OperationScenario)
	Creating a new edges between operation utility and operation scenarios node (HasScenario)

	The Building Model
	Minimum requirements
	Find ID's and names from gen_dk

	The creation of new nodes and edges
	Creating a new project node (Project)
	Creating a new building node (Building)
	Creating a new edge between project and building node (MainBuilding)
	Creating a new edge between a new building and root node (BuildingToRoot)
	Creating a new embodied root node (EmbodiedRoot)
	Creating a new edge between a embodied root and model (RootToModel)
	Creating a new edge between a embodied root and construction process (RootToConstructionProcess)
	Creating a new edge between a new building and operation node (BuildingToOperation)
	Create a new element node (Element)
	Create a new edge between ElementCategory and Element node (CategoryToElement
	Create a new construction node (Construction)
	Create a new edge between element and construction node (ElementToConstruction
	Create a new edge between ElementCategory and construction node (CategoryToConstruction)
	Creating a new product node (Product)
	Create a new edge between construction and product node (ConstructionToProduct
	Create a new stage node (Stage)
	Create a new edge between product and stage node (ProductToStage)
	Create a new edge between stage category and stage node (CategoryToStage)

	The import function in LCAbyg
	Import a json project in LCAbyg
	Check the code

	Import json components in LCAbyg

	Detailed Overview
	JSON files (import_example)
	The Building Operation and Energy Consumption
	The Building Model

	Choices in Building node
	Building type (bygningstype)
	Calculation mode (beregningstype)

	Troubleshooting
	Debug information in LCAbyg
	LCAbyg.exe (debug tool)

	ID external source
	ID from external source

